Revision as of 02:27, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Find the maximum possible value for <math>p(1 - p)</math> if <math>0 < p < 1</math>. Using this result and Exercise Exercise, show that the estimate <math display="block"> P\left( \left| \frac {S_n}n - p \right| \geq...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Find the maximum possible value for [math]p(1 - p)[/math] if [math]0 \lt p \lt 1[/math]. Using this result and Exercise Exercise, show that the estimate

[[math]] P\left( \left| \frac {S_n}n - p \right| \geq \epsilon \right) \leq \frac 1{4n\epsilon^2} [[/math]]

is valid for any [math]p[/math].