Revision as of 02:27, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In Exercise \ref{sec 6.2}., you showed that, for the hat check problem, the number <math>S_n</math> of people who get their own hats back has <math>E(S_n) = V(S_n) = 1</math>. Using Chebyshev's Inequality, show t...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

In Exercise \ref{sec 6.2}., you showed that, for the

hat check problem, the number [math]S_n[/math] of people who get their own hats back has [math]E(S_n) = V(S_n) = 1[/math]. Using Chebyshev's Inequality, show that [math]P(S_n \geq 11) \leq .01[/math] for any [math]n \geq 11[/math].