Revision as of 02:27, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Prove the following analogue of Chebyshev's Inequality: <math display="block"> P(|X - E(X)| \geq \epsilon) \leq \frac 1\epsilon E(|X - E(X)|)\ . </math>")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Prove the following analogue of Chebyshev's Inequality:

[[math]] P(|X - E(X)| \geq \epsilon) \leq \frac 1\epsilon E(|X - E(X)|)\ . [[/math]]