Revision as of 03:28, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Repeat Exercise Exercise, but this time with mean 10 and variance 3. Note that the table in Appendix A presents values for a standard normal variable. Find the standardized version <math>X^*</math> for <math>X</math>, fi...")
BBot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Repeat Exercise Exercise, but this time with mean 10 and
variance 3. Note that the table in Appendix A presents values for a standard normal variable. Find the standardized version [math]X^*[/math] for [math]X[/math], find values for [math]f^*(x) = P(|X^*| \geq x)[/math] as in Exercise Exercise, and then rescale these values for [math]f(x) = P(|X -10| \geq x)[/math]. Graph and compare this function with the Chebyshev function [math]g(x) = 3/x^2[/math].