Revision as of 02:28, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>S</math> be the number of heads in 1,00,00 tosses of a fair coin. Use (a) Chebyshev's inequality, and (b) the Central Limit Theorem, to estimate the probability that <math>S</math> lies between 499,00 and 500,00. Use the same two meth...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]S[/math] be the number of heads in 1,00,00 tosses of a fair
coin. Use (a) Chebyshev's inequality, and (b) the Central Limit Theorem, to estimate the probability that [math]S[/math] lies between 499,00 and 500,00. Use the same two methods to estimate the probability that [math]S[/math] lies between 499,00 and 501,00, and the probability that [math]S[/math] lies between 498,00 and 501,00.