Revision as of 02:30, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that if <math>X</math> is a random variable with mean <math>\mu</math> and variance <math>\sigma^2</math>, and if <math>X^* = (X - \mu)/\sigma</math> is the standardized version of <math>X</math>, then <math display="block"> g_{X^*}(t) = e^{...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Show that if [math]X[/math] is a random variable with mean [math]\mu[/math]

and variance [math]\sigma^2[/math], and if [math]X^* = (X - \mu)/\sigma[/math] is the standardized version of [math]X[/math], then

[[math]] g_{X^*}(t) = e^{-\mu t/\sigma} g_X\left( \frac t\sigma \right)\ . [[/math]]