Revision as of 02:31, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Consider a branching process such that the number of offspring of a parent is <math>j</math> with probability <math>1/2^{j + 1}</math> for <math>j = 0</math>, 1, 2, \ldots. <ul><li> Using the results of Example sh...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Consider a branching process such that the number of offspring of a

parent is [math]j[/math] with probability [math]1/2^{j + 1}[/math] for [math]j = 0[/math], 1, 2, \ldots.

  • Using the results of Example show that the probability that there are [math]j[/math] offspring in the [math]n[/math]th generation is
    [[math]] p_j^{(n)} = \left \{ \begin{array}{ll} \frac{1}{n(n + 1)} (\frac {n}{n + 1})^j, & \mbox{if $ j \geq 1$}, \\ \frac {n}{n + 1}, & \mbox{if \ltmath\gt j = 0[[/math]]
    }.\end{array}\right. </math>
  • Show that the probability that the process dies out exactly at the [math]n[/math]th generation is [math]1/n(n + 1)[/math].
  • Show that the expected lifetime is infinite even though [math]d = 1[/math].