Revision as of 02:31, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with values in <math>[\,0,1]</math>, uniform density function <math>f_X(x) \equiv 1</math> and moment generating function <math>g(t) = (e^t - 1)/t</math>. Find in terms of <math>g(t)</math> the...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] be a continuous random variable with values in [math][\,0,1][/math],
uniform density function [math]f_X(x) \equiv 1[/math] and moment generating function [math]g(t) = (e^t - 1)/t[/math]. Find in terms of [math]g(t)[/math] the moment generating function for
- [math]-X[/math].
- [math]1 + X[/math].
- [math]3X[/math].
- [math]aX + b[/math].