Revision as of 03:31, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In Exercise Exercise, we assumed that every man has a son. Assume instead that the probability that a man has at least one son is .8. Form a Markov chain with four states. If a man has a son, the probability that this...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

In Exercise Exercise, we assumed that every

man has a son. Assume instead that the probability that a man has at least one son is .8. Form a Markov chain with four states. If a man has a son, the probability that this son is in a particular profession is the same as in Exercise \ref{exer 11.1.11}. If there is no son, the process moves to state four which represents families whose male line has died out. Find the matrix of transition probabilities and find the probability that a randomly chosen grandson of an unskilled laborer is a professional man.