Revision as of 02:32, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> For Example, verify that the following matrix is the inverse of <math>\mat{I} - \mat{Q}</math> and hence is the fundamental matrix <math>\mat{N}</math>. <math display="block"> \mat{N} = \pmatrix{ 8/3 & 1/6 & 4/...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
For Example, verify that the following
matrix is the inverse of [math]\mat{I} - \mat{Q}[/math] and hence is the fundamental matrix [math]\mat{N}[/math].
[[math]]
\mat{N} = \pmatrix{
8/3 & 1/6 & 4/3 & 2/3 \cr
4/3 & 4/3 & 8/3 & 4/3 \cr
4/3 & 1/3 & 8/3 & 4/3 \cr
2/3 & 1/6 & 4/3 & 8/3 \cr}\ .
[[/math]]
Find [math]\mat{N} \mat{c}[/math] and [math]\mat{N} \mat{R}[/math]. Interpret the results.