Revision as of 02:33, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Which of the following matrices are transition matrices for regular Markov chains? <ul><li> <math>\mat {P} = \pmatrix{ .5 & .5 \cr .5 & .5 }</math>. \smallskip </li> <li> <math>\mat {P} = \pmatrix{ .5 & .5 \cr 1 & 0 }</math>. \smallskip </li> <li...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Which of the following matrices are transition matrices
for regular Markov chains?
- [math]\mat {P} = \pmatrix{ .5 & .5 \cr .5 & .5 }[/math]. \smallskip
- [math]\mat {P} = \pmatrix{ .5 & .5 \cr 1 & 0 }[/math]. \smallskip
- [math]\mat {P} = \pmatrix{ 1/3 & 0 & 2/3 \cr 0 & 1 & 0 \cr 0 & 1/5 & 4/5}[/math]. \smallskip
- [math]\mat {P} = \pmatrix{ 0 & 1 \cr 1 & 0}[/math]. \smallskip
- [math]\mat {P} = \pmatrix{ 1/2 & 1/2 & 0 \cr 0 & 1/2 & 1/2 \cr 1/3 & 1/3 & 1/3}[/math]. \smallskip