Exercise
In his book, Wahrscheinlichkeitsrechnung und
Statistik,[Notes 1] A. Engle proposes an algorithm for finding the fixed vector for an ergodic Markov chain when the transition probabilities are rational numbers. Here is his algorithm: For each state [math]i[/math], let [math]a_i[/math] be the least common multiple of the denominators of the non-zero entries in the [math]i[/math]th row. Engle describes his algorithm in terms of moving chips around on the states---indeed, for small examples, he recommends implementing the algorithm this way. Start by putting [math]a_i[/math] chips on state [math]i[/math] for all [math]i[/math]. Then, at each state, redistribute the [math]a_i[/math] chips, sending [math]a_i p_{ij}[/math] to state [math]j[/math]. The number of chips at state [math]i[/math] after this redistribution need not be a multiple of [math]a_i[/math]. For each state [math]i[/math], add just enough chips to bring the number of chips at state [math]i[/math] up to a multiple of [math]a_i[/math]. Then redistribute the chips in the same manner. This process will eventually reach a point where the number of chips at each state, after the redistribution, is the same as before redistribution. At this point, we have found a fixed vector. Here is an example:
We start with [math]\mat {a} = (4,2,4)[/math]. The chips after successive redistributions are shown in Table. \begin{table} \centering
\caption{Distribution of chips.}
\end{table} We find that [math]\mat {a} = (20,8,12)[/math] is a fixed vector.
- Write a computer program to implement this algorithm.
- Prove that the algorithm will stop. Hint: Let [math]\mat{b}[/math] be a vector with integer components that is a fixed vector for [math]\mat{P}[/math] and such that each coordinate of the starting vector [math]\mat{a}[/math] is less than or equal to the corresponding component of [math]\mat{b}[/math]. Show that, in the iteration, the components of the vectors are always increasing, and always less than or equal to the corresponding component of [math]\mat{b}[/math].
Notes