Revision as of 02:35, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> If <math>\mat{P}</math> is a reversible Markov chain, is it necessarily true that the mean time to go from state <math>i</math> to state <math>j</math> is equal to the mean time to go from state <math>j</math> to state <math>i</math>? '' Hint''...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
If [math]\mat{P}[/math] is a reversible Markov chain, is it
necessarily true that the mean time to go from state [math]i[/math] to state [math]j[/math] is equal to the mean time to go from state [math]j[/math] to state [math]i[/math]? Hint: Try the Land of Oz example (Example).