Revision as of 02:35, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> (Crowell<ref group="Notes" >Private communication.</ref>) Let <math>\mat{P}</math> be the transition matrix of an ergodic Markov chain. Show that <math display="block"> (\mat {I} + \mat {P} +\cdots+ \mat {P}^{n - 1})(\mat {I} - \mat {P} + \mat...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
(Crowell[Notes 1]) Let [math]\mat{P}[/math]
be the transition matrix of an ergodic Markov chain. Show that
[[math]]
(\mat {I} + \mat {P} +\cdots+ \mat {P}^{n - 1})(\mat {I} - \mat {P} + \mat {W})
= \mat {I} -
\mat {P}^n + n\mat {W}\ ,
[[/math]]
and from this show that
[[math]]
\frac{\mat {I} + \mat {P} +\cdots+ \mat {P}^{n - 1}}n \to \mat {W}\ ,
[[/math]]
as [math]n \rightarrow \infty[/math].
Notes