Revision as of 02:35, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> (Crowell<ref group="Notes" >Private communication.</ref>) Let <math>\mat{P}</math> be the transition matrix of an ergodic Markov chain. Show that <math display="block"> (\mat {I} + \mat {P} +\cdots+ \mat {P}^{n - 1})(\mat {I} - \mat {P} + \mat...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

(Crowell[Notes 1]) Let [math]\mat{P}[/math]

be the transition matrix of an ergodic Markov chain. Show that

[[math]] (\mat {I} + \mat {P} +\cdots+ \mat {P}^{n - 1})(\mat {I} - \mat {P} + \mat {W}) = \mat {I} - \mat {P}^n + n\mat {W}\ , [[/math]]

and from this show that

[[math]] \frac{\mat {I} + \mat {P} +\cdots+ \mat {P}^{n - 1}}n \to \mat {W}\ , [[/math]]

as [math]n \rightarrow \infty[/math].

Notes

  1. Private communication.