Revision as of 03:35, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> A perpetual craps game goes on at Charley's. Jones comes into Charley's on an evening when there have already been 100 plays. He plans to play until the next time that snake eyes (a pair of ones) are rolled. Jones wonders how many times he wil...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

A perpetual craps game goes on at

Charley's. Jones comes into Charley's on an evening when there have already been 100 plays. He plans to play until the next time that snake eyes (a pair of ones) are rolled. Jones wonders how many times he will play. On the one hand he realizes that the average time between snake eyes is 36 so he should play about 18 times as he is equally likely to have come in on either side of the halfway point between occurrences of snake eyes. On the other hand, the dice have no memory, and so it would seem that he would have to play for 36 more times no matter what the previous outcomes have been. Which, if either, of Jones's arguments do you believe? Using the result of Exercise Exercise, calculate the expected to reach snake eyes, in equilibrium, and see if this resolves the apparent paradox. If you are still in doubt, simulate the experiment to decide which argument is correct. Can you give an intuitive argument which explains this result?