Revision as of 02:35, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Using the Binomial Theorem, show that <math display="block"> {1\over{\sqrt {1 - 4x}}} = \sum_{m = 0}^\infty {2m \choose m} x^m\ . </math> What is the interval of convergence of this power series?")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Using the Binomial Theorem, show that
[[math]]
{1\over{\sqrt {1 - 4x}}} = \sum_{m = 0}^\infty {2m \choose m} x^m\ .
[[/math]]
What is the interval of convergence of this power series?