Revision as of 02:36, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that the Taylor series expansion for <math>\sqrt{1 - x}</math> is <math display="block"> \sqrt{1 - x} = \sum_{n = 0}^\infty {{1/2} \choose n} x^n\ , </math> where the binomial coefficient <math>{1/2} \choose n</math> is <math display="bloc...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Show that the Taylor series expansion for [math]\sqrt{1 - x}[/math] is
[[math]]
\sqrt{1 - x} = \sum_{n = 0}^\infty {{1/2} \choose n} x^n\ ,
[[/math]]
where the binomial coefficient [math]{1/2} \choose n[/math] is
[[math]]
{{1/2} \choose n} = \frac{(1/2)(1/2 - 1) \cdots (1/2 - n + 1)}{n!}\ .
[[/math]]
Using this and the result of Exercise Exercise, show that the probability that the gambler is ruined on the [math]n[/math]th step is
[[math]]
p_T(n) = \left \{ \begin{array}{ll}
\frac{(-1)^{k - 1}}{2p} {{1/2} \choose k} (4pq)^k, & \mbox{if $n = 2k - 1$,} \\
0, & \mbox{if \ltmath\gtn = 2k[[/math]]
.}
\end{array} \right.
</math>