Revision as of 02:36, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> For the gambler's ruin problem, assume that the gambler starts with <math>k</math> dollars. Let <math>T_k</math> be the time to reach 0 for the first time. <ul><li> Show that the generating function <math>h_k(t)</math> for <math>T_k</math> is the...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

For the gambler's ruin problem, assume that the

gambler starts with [math]k[/math] dollars. Let [math]T_k[/math] be the time to reach 0 for the first time.

  • Show that the generating function [math]h_k(t)[/math] for [math]T_k[/math] is the [math]k[/math]th power of the generating function for the time [math]T[/math] to ruin starting at 1. Hint: Let [math]T_k = U_1 + U_2 +\cdots+ U_k[/math], where [math]U_j[/math] is the time for the walk starting at [math]j[/math] to reach [math]j - 1[/math] for the first time.
  • Find [math]h_k(1)[/math] and [math]h_k'(1)[/math] and interpret your results.