Revision as of 23:29, 12 June 2024 by Admin
BBy Bot
Jun 09'24
Exercise
Show that if we start with the identity ordering of [math]\{1, 2,\ldots, n\}[/math], then the probability that an [math]a[/math]-shuffle leads to an ordering with exactly [math]r[/math] rising sequences equals
[[math]]
{{{n + a - r}\choose{n}}\over{a^n}}A(n, r)\ ,
[[/math]]
for [math]1 \le r \le a[/math].