May 05'23
Exercise
A client spends [math]X[/math] minutes in an insurance agent’s waiting room and [math]Y[/math] minutes meeting with the agent. The joint density function of [math]X[/math] and [math]Y[/math] can be modeled by
[[math]]
f(x,y) = \begin{cases}
\frac{1}{800} e^{-x/40}e^{-y/20}, \,\, x \gt 0, y \gt 0\\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Determine which of the following expressions represents the probability that a client spends less than 60 minutes at the agent’s office.
- [math]\frac{1}{800}\int_0^{40}\int_0^{20}e^{-x/40}e^{-y/20} dy dx[/math]
- [math]\frac{1}{800} \int_0^{40}\int_0^{20-x}e^{-x/40}e^{-y/20} dy dx[/math]
- [math]\frac{1}{800} \int_0^{20}\int_0^{40-x}e^{-x/40}e^{-y/20} dy dx[/math]
- [math] \frac{1}{800} \int_0^{60}\int_0^{60}e^{-x/40}e^{-y/20} dy dx[/math]
- [math]\frac{1}{800} \int_0^{60}\int_0^{60-x}e^{-x/40}e^{-y/20} dy dx [/math]
May 05'23