May 05'23
Exercise
Let [math]X[/math] represent the age of an insured automobile involved in an accident. Let [math]Y[/math] represent the length of time the owner has insured the automobile at the time of the accident. [math]X[/math] and [math]Y[/math] have joint probability density function
[[math]]
f(x,y) = \begin{cases}
\frac{10-xy^2}{64}, \,\, 2 \leq x \leq 10, 0 \leq y \leq 1 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Calculate the expected age of an insured automobile involved in an accident.
- 4.9
- 5.2
- 5.8
- 6.0
- 6.4
May 05'23
Solution: C
The marginal density of X is given by
[[math]]
f_X(x) = \int_0^1 \frac{1}{64}(10-xy^2) dy = \frac{1}{64}(10y - \frac{xy^3}{3}) \Big |_0^1 = \frac{1}{64}(10-\frac{x}{3}).
[[/math]]
Then
[[math]]
\begin{align*}
\operatorname{E}(X) = \int_2^{10}xf_X(x) dx &= \int_2^{10} \frac{1}{64}(10x - \frac{x^2}{3}) dx \\
&= \frac{1}{64}(5x^2 - \frac{x^3}{9})\Big |_2^{10} \\
&= \frac{1}{64} \left [ \left( 500 - \frac{1000}{9}\right ) - \left( 20 - \frac{8}{9}\right)\right ] \\
&= 5.778.
\end{align*}
[[/math]]