May 04'23
Exercise
Let [math]X_1, X_2, X_3[/math] be a random sample from a discrete distribution with probability function
[[math]]
p(x) = \begin{cases}
1/3, \, x=0 \\
2/3, \, x=1 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Determine the moment generating function, [math]M(t)[/math], of [math]Y = X_1X_2X_3 [/math].
- [math]\frac{19}{27} + \frac{8}{27}e^t[/math]
- [math]1 + 2e^t[/math]
- [math](\frac{1}{3} + \frac{2}{3}e^t)^3[/math]
- [math]\frac{1}{27} + \frac{8}{27}e^{3t}[/math]
- [math]\frac{1}{3} + \frac{2}{3}e^{3t}[/math]
May 04'23
Solution: A
Let g(y) be the probability function for [math]Y = X_1X_2X_3. [/math] Note that [math]Y = 1 [/math] if and only if
[[math]]
X_1 = X_2 = X_3 = 1.
[[/math]]
Otherwise, [math]Y = 0 [/math]. Since
[[math]]
\begin{align*}
\operatorname{P}[Y = 1] &= \operatorname{P}[X_1 = 1 \cap X_2 = 1 \cap X_3 = 1] \\
&= \operatorname{P}[X_1 = 1] \operatorname{P}[X_2 = 1] \operatorname{P}[X_3 = 1] = (2/3)^3 \\
&= 8/27.
\end{align*}
[[/math]]
We conclude that
[[math]]
g(y) = \begin{cases}
\frac{19}{27}, \quad y = 0 \\
\frac{8}{27}, \quad y = 1 \\
0, \, \textrm{otherwise}
\end{cases}
[[/math]]
and
[[math]] M(t) = E[e^{y_t}] = \frac{19}{27} + \frac{8}{27}e^t.[[/math]]