May 13'23
Exercise
Personal auto property damage claims in a certain region are known to follow the Weibull distribution:
[[math]]
F(x) = 1 - \exp \left[-(\frac{x}{\theta})^{0.2}\right], \, x \gt 0
[[/math]]
A sample of four claims is:
130 240 300 540
The values of two additional claims are known to exceed 1000.
Calculate the maximum likelihood estimate of [math]\theta[/math].
- Less than 300
- At least 300, but less than 1200
- At least 1200, but less than 2100
- At least 2100, but less than 3000
- At least 3000
May 13'23
Key: E
The density function is
[[math]]
f(x) = \frac{0.2x^{-0.8}}{\theta^{0.2}}e^{-(x/\theta)^{0.2}}.
[[/math]]
The likelihood function is
[[math]]
\begin{aligned}
L(\theta) &= f (130) f (240) f (300) f (540)[1 − F (1000)]^2 \\
&= \frac{0.2(130)^{-0.8}}{\theta^{0.2}} e^{-(130/\theta)^{0.2}} \frac{0.2(240)^{-0.8}}{\theta^{0.2}} e^{-(240/\theta)^{0.2}} \frac{0.2(300)^{-0.8}}{\theta^{0.2}} e^{-(300/\theta)^{0.2}} \frac{0.2(540)^{-0.8}}{\theta^{0.2}} e^{-(540/\theta)^{0.2}}e^{-(1000/\theta)^{0.2}}e^{-(1000/\theta)^{0.2}} \\
& \propto \theta^{-0.8} e^{ −\theta^{0.2} (130^{0.2} + 240^{0.2} + 300^{0.2} + 540^{0.2} +1000^{0.2} +1000^{0.2} )} \\
l(\theta) &= -0.8\ln(\theta) - \theta^{-0.2}(130^{0.2} + 240^{0.2} + 300^{0.2} + 540^{0.2} + 1000^{0.2} + 1000^{0.2}) \\
&= −0.8\ln(\theta ) − 20.2505 \theta^{−0.2} , \\
l^{'}(\theta) &= -0.8\theta^{-1} + 0.2(20.2505)\theta^{-1.2} = 0, \\
\theta^{-0.2} &= 0.197526, \, \hat{\theta} = 3,325.67.
\end{aligned}
[[/math]]