Jan 18'24
Exercise
For a 2 -year deferred, 2 -year term insurance of 2000 on [65], you are given:
(i) The following select and ultimate mortality table with a 3-year select period:
[math]x[/math] | [math]q_{[x]}[/math] | [math]q_{[x]+1}[/math] | [math]q_{[x]+2}[/math] | [math]q_{x+3}[/math] | [math]x+3[/math] |
---|---|---|---|---|---|
65 | 0.08 | 0.10 | 0.12 | 0.14 | 68 |
66 | 0.09 | 0.11 | 0.13 | 0.15 | 69 |
67 | 0.10 | 0.12 | 0.14 | 0.16 | 70 |
68 | 0.11 | 0.13 | 0.15 | 0.17 | 71 |
69 | 0.12 | 0.14 | 0.16 | 0.18 | 72 |
(ii) [math]\quad i=0.04[/math]
(iii) The death benefit is payable at the end of the year of death Calculate the actuarial present value of this insurance.
- 260
- 290
- 350
- 370
- 410
Jan 18'24
Answer: C
[[math]]
\begin{aligned}
{ }_{2 \mid 2} A_{65}= & \underbrace{v^{3}}_{\text {payment year } 3} \underbrace{p_{[65]}}_{\text {Lives } 2 \text { years }} \times \underbrace{q_{[65]+2}}_{\text {Die year } 3} \\
& +\underbrace{v^{4}}_{\text {payment year } 4} \underbrace{3 p_{[65]}}_{\text {Lives 3 years }} \times \underbrace{q_{65+3}}_{\text {Die year 4 }} \\
= & \left(\frac{1}{1.04}\right)^{3}(0.92)(0.9)(0.12) \\
& +\left(\frac{1}{1.04}\right)^{4}(0.92)(0.9)(0.88)(0.14) \\
= & 0.088+0.087=0.176
\end{aligned}
[[/math]]
The actuarial present value of this insurance is therefore [math]2000 \times 0.176=352[/math].