Jan 18'24

Exercise

For a 2 -year deferred, 2 -year term insurance of 2000 on [65], you are given:

(i) The following select and ultimate mortality table with a 3-year select period:

[math]x[/math] [math]q_{[x]}[/math] [math]q_{[x]+1}[/math] [math]q_{[x]+2}[/math] [math]q_{x+3}[/math] [math]x+3[/math]
65 0.08 0.10 0.12 0.14 68
66 0.09 0.11 0.13 0.15 69
67 0.10 0.12 0.14 0.16 70
68 0.11 0.13 0.15 0.17 71
69 0.12 0.14 0.16 0.18 72

(ii) [math]\quad i=0.04[/math]

(iii) The death benefit is payable at the end of the year of death Calculate the actuarial present value of this insurance.

  • 260
  • 290
  • 350
  • 370
  • 410

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 18'24

Answer: C

[[math]] \begin{aligned} { }_{2 \mid 2} A_{65}= & \underbrace{v^{3}}_{\text {payment year } 3} \underbrace{p_{[65]}}_{\text {Lives } 2 \text { years }} \times \underbrace{q_{[65]+2}}_{\text {Die year } 3} \\ & +\underbrace{v^{4}}_{\text {payment year } 4} \underbrace{3 p_{[65]}}_{\text {Lives 3 years }} \times \underbrace{q_{65+3}}_{\text {Die year 4 }} \\ = & \left(\frac{1}{1.04}\right)^{3}(0.92)(0.9)(0.12) \\ & +\left(\frac{1}{1.04}\right)^{4}(0.92)(0.9)(0.88)(0.14) \\ = & 0.088+0.087=0.176 \end{aligned} [[/math]]


The actuarial present value of this insurance is therefore [math]2000 \times 0.176=352[/math].

00