Exercise
For an annuity-due that pays 100 at the beginning of each year that (45) is alive, you are given:
(i) Mortality for standard lives follows the Standard Ultimate Life Table
(ii) The force of mortality for standard lives age [math]45+t[/math] is represented as [math]\mu_{45+t}^{\text {SULT }}[/math]
(iii) The force of mortality for substandard lives age [math]45+t, \mu_{45+t}^{S}[/math], is defined as:
(iv) [math]\quad i=0.05[/math]
Calculate the actuarial present value of this annuity for a substandard life age 45.
- 1700
- 1710
- 1720
- 1730
- 1740
Answer: A
[math]\ddot{a}_{45}^{S}=1+v p_{45}^{S} \ddot{a}_{46}^{S U L T}[/math]
[math]p_{45}^{S}=e^{-\int_{0}^{1} \mu_{45+t}^{S} d t}=e^{-\int_{0}^{1}\left(\mu_{45+t}^{S U L T}+0.05\right) d t}=e^{-\int_{0}^{1}\left(\mu_{45+t}^{S U L T}\right) d t} e^{-\int_{0}^{1}(0.05) d t}=p_{45}^{S U L T} \cdot e^{-0.05}=\left(\frac{98,957.6}{99,033.9}\right) e^{-0.05}=0.9504966[/math]
[math]\ddot{a}_{45}^{S}=1+v p_{45}^{S} \ddot{a}_{46}^{S U L T}=1+(1.05)^{-1}(0.9504966)(17.6706)=17.00[/math]
[math]100 \ddot{a}_{45}^{S}=1700[/math]