May 14'23
Exercise
Prescription drug losses, S, are modeled assuming the number of claims has a geometric distribution with mean 4, and the amount of each prescription is 40.
Calculate [math]\operatorname{E}[(S-100)_{+}][/math]
- 60
- 82
- 92
- 114
- 146
May 14'23
Key: C
Let N = number of prescriptions then
[math]n[/math] | [math]f_N(n)[/math] |
---|---|
0 | 0.2000 |
1 | 0.1600 |
2 | 0.1280 |
3 | 0.1024 |
[[math]]
\begin{aligned}
&\operatorname{E}[( S − 100) + ] = \operatorname{E}[ S ] − \operatorname{E}[ S \wedge 100] \\
&\operatorname{E}[ S ] = 40(4) = 160 \\
&\operatorname{E}[ S \wedge 100] = 0(0.2) + 40(0.16) + 80(0.128) + 100(1 − 0.2 − 0.16 − 0.128) = 67.84 \\
&\operatorname{E}[( S − 100) + ] = 160 − 67.84 = 92.16 \\
\end{aligned}
[[/math]]