Jan 18'24
Exercise
For a special fully continuous whole life insurance on [math](x)[/math], you are given:
i) [math] \mu_{x+t}=0.03, t \geq 0[/math]
ii) [math]\delta=0.06[/math]
iii) The death benefit at time [math]t[/math] is [math]b_{t}=e^{0.05 t}, t \geq 0[/math]
iv) [math]Z[/math] is the present value random variable at issue for this insurance
Calculate [math]\operatorname{Var}(Z)[/math].
- 0.300
- 0.325
- 0.350
- 0.375
- 0.400
Jan 18'24
Answer: D
[[math]]
\begin{aligned}
E(Z) & =\int_{0}^{\infty}{ }_{t} p_{x} \times \mu \times e^{0.05 \times t} e^{-\delta \times t} d t \\
& =\int_{0}^{\infty} e^{-0.03 \times t} \times 0.03 \times e^{0.05 \times t} e^{-0.06 \times t} d t \\
& =\frac{0.03}{0.04} \times\left. e^{-0.04 t}\right|_{0} ^{\infty}=0.75 \\
E\left(Z^{2}\right) & =\int_{0}^{\infty}{ }_{t} p_{x} \times \mu \times e^{0.05 \times 2 \times t} e^{-\delta \times 2 \times t} d t \\
& =\int_{0}^{\infty} e^{-0.03 \times t} \times 0.03 \times e^{0.05 \times 2 \times t} e^{-0.06 \times 2 \times t} d t \\
& =\frac{0.03}{0.05} \times\left. e^{-0.05 t}\right|_{0} ^{\infty}=0.6
\end{aligned}
[[/math]]
[math]\operatorname{Var}(Z)=E\left(Z^{2}\right)-[E(Z)]^{2}=0.6-0.75^{2}=0.375[/math]