Exercise
For a life annuity-due issued to (55), you are given:
i) The annuity pays an annual benefit of [math]X[/math] through age 64
ii) Beginning at age 65 , the annuity pays [math]75 \%[/math] of [math]X[/math]
iii) The present value of this annuity is 250,000
iv) Mortality follows the Standard Ultimate Life Table v) [math]\quad i=0.05[/math]
Calculate [math]X[/math].
- 17,400
- 17,500
- 17,600
- 17,700
- 17,800
Answer: E
Any of these ways of viewing the benefit structure would be fine; all give the same answer:
(i) A temporary life annuity-due of [math]X[/math] plus a deferred life annuity-due of [math]0.75 X[/math].
(ii) A whole life annuity-due of [math]0.75 \mathrm{X}[/math] plus a temporary deferred life annuity-due of [math]0.25 \mathrm{X}[/math]
(iii) A whole life annuity-due of [math]X[/math] minus a deferred life annuity-due of [math]0.25 X[/math]
This solution views it the first way.
[math]X \ddot{a}_{55: 10}+0.75 X \ddot{a}_{65}{ }_{10} E_{55}=8.0192 X+(0.75 X)(0.59342)(13.5498)=14.05 X=250,000[/math]
[math]\Rightarrow X=17,794[/math]