ABy Admin
Nov 26'23
Exercise
The present value of 200 paid at the end of [math]n[/math] years, plus the present value of 100 paid at the end of [math]2 n[/math] years is 200 .
Determine the annual effective rate of interest.
- [[math]]\left(\frac{\sqrt{3}+1}{2}\right)^{1 / n}-1[[/math]]
- [[math]]1-\left(\frac{\sqrt{3}-1}{2}\right)^{1 / n}[[/math]]
- [[math]]\left(\frac{\sqrt{3}-1}{2}\right)^{1 / n}-1[[/math]]
- [[math]]\left(\frac{\sqrt{3}+1}{2}\right)-1[[/math]]
- [[math]]1-\left(\frac{\sqrt{3}-1}{2}\right)^{1/ 2 n}[[/math]]
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.
ABy Admin
Nov 26'23
Solution: A
[[math]]
\begin{aligned}
& 200 v^n+100 v^{2 n}=200 \text { so } 0=x^2+2 x-2 \text { so } v^n=x=\frac{-2 \pm \sqrt{4+8}}{2}=-1+\sqrt{3} \text {. But } v=1 /(1+i) \text { so } \\
& i=(1 / v)-1=\left(\frac{1}{\sqrt{3}-1}\right)^{1 / n}-1=\left(\frac{\sqrt{3}+1}{3-1}\right)^{1 / n}-1
\end{aligned}
[[/math]]
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.