ABy Admin
Jun 24'24
Exercise
Let [math]X[/math] and [math]Y[/math] be two random variables defined on the finite sample space [math]\Omega[/math]. Assume that [math]X[/math], [math]Y[/math], [math]X + Y[/math], and [math]X - Y[/math] all have the same distribution. Determine [math]P(X = Y = 0) [/math].
- 0
- 0.2
- 0.5
- 0.8
- 1
References
Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.
ABy Admin
Jun 25'24
Solution: E
We have
[[math]]
E((X-Y)^2]=E[X^2] + E[Y^2] - 2E[XY]=E((X+Y)^2] = E[X^2] + E[Y^2] + 2E[XY].
[[/math]]
Hence [math]E[XY] = 0 [/math]. Then we also have
[[math]]
E[X^2] = E[(X-Y)^2] = E[X^2] + E[Y^2] = 2E[X^2].
[[/math]]
Hence [math]E[X^2] = 0 [/math] which means that [math]P(X=0) = 1 [/math].