May 13'23
Exercise
You are given:
-
The distribution of the number of claims per policy during a one-year period for 10,000 insurance policies is:
Number of Claims per Policy Number of Policies 0 5000 1 5000 2 or more 0 - You fit a binomial model with parameters m and q using the method of maximum likelihood.
Calculate the maximum value of the loglikelihood function when [math]m = 2[/math].
- −10,397
- −7,781
- −7,750
- −6,931
- −6,730
May 13'23
Key: B
[[math]]
\begin{aligned}
L(q) &= \left [ \binom{2}{0}(1-q)^2\right]^{5000} \left[ \binom{2}{1}q(1-q)\right]^{5000} = 2^{5000}q^{5000}(1-q)^{15000} \\
l(q) &= 5000 \ln(2) + 5000 \ln(q) + 15000 \ln(1 − q) \\
l^{'}(q) &= 5000q^{−1} − 15000(1 − q)^{−1} = 0 \\
\hat{q} &= 0.25 \\
l(0.25) &= 5000 \ln(2) + 5000 \ln(0.25) + 15000 \ln(0.75) \\
&= −7780.97.
\end{aligned}
[[/math]]