ABy Admin
May 06'23
Exercise
A device containing two key components fails when, and only when, both components fail. The lifetimes, [math]T_1 [/math] and [math]T_2[/math] of these components are independent with common density function
[[math]]
f(t) = \begin{cases}
e^{-t}, \, 0\lt t \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
The cost, [math]X[/math], of operating the device until failure is [math]2T_1 + T_2[/math] . Let [math]g[/math] be the density function for [math]X[/math].
Determine [math]g(x)[/math], for [math]x \gt 0 [/math].
- [math]e^{−x/2} − e^{−x}[/math]
- [math]2(e^{-x/2} - e^{-x} )[/math]
- [math]\frac{x^2e^{-x}}{2}[/math]
- [math]\frac{e^{-x/2}}{2}[/math]
- [math]\frac{e^{-x/3}}{3}[/math]
ABy Admin
May 06'23
Solution: A
The joint density of [math]T_1[/math] and [math]T_2[/math] is given by
[[math]]
f(t_1,t_2) = e^{-t_1}e^{-t_2}, \, t_1 \gt 0, \, t_2 \gt 0
[[/math]]
Therefore
[[math]]
\begin{align*}
\operatorname{P}[X \leq x ] &= \operatorname{P}[2T_1 + T_2 \leq x] \\
&= \int_0^x \int_0^{\frac{1}{2}(x-t_2)} e^{-t_1}e^{-t_2} dt_1 dt_2 \\ &= \int_0^x e^{-t_2} \left [ -e^{t_1} \Big |_0^{\frac{1}{2}(x-t_2)} \right ] dt_2 \\
&= \int_0^x e^{-t_2} \left [ 1-e^{-\frac{1}{2}x + \frac{1}{2}t_2} \right ] dt_2 \\
&= \int_0^{x} \left (e^{-t_2} - e^{-\frac{1}{2}x} e^{-\frac{1}{2}t_2} \right) dt_2 \\
&= \left [ -e^{-t_2} + 2e^{-\frac{1}{2}x}e^{-\frac{1}{2}t_2}\right ] \Big |_0^x \\
&= -e^{-x} + 2e^{-\frac{1}{2}x} + 1 - 2e^{-\frac{1}{2}x}, \, x \gt 0
\end{align*}
[[/math]]
It follows that the density of [math]X[/math] is given by
[[math]]
g(x) = \frac{d}{dx} [ 1-2e^{-\frac{1}{2}x} + e^{-x} ] = e^{-\frac{1}{2}x} -e^{-x}, x \gt 0.
[[/math]]