May 05'23
Exercise
Let [math]T_1[/math] and [math]T_2[/math] represent the lifetimes in hours of two linked components in an electronic device. The joint density function for [math]T_1[/math] and [math]T_2[/math] is uniform over the region defined by
[[math]]
0 \leq t_1 \leq t_2 \leq L
[[/math]]
where [math]L[/math] is a positive constant. Determine the expected value of the sum of the squares of [math]T_1[/math] and [math]T_2[/math].
- [math]\frac{L^2}{3}[/math]
- [math]\frac{L^2}{2}[/math]
- [math]\frac{2L^2}{3}[/math]
- [math]\frac{3L^2}{4}[/math]
- [math]L^2[/math]
May 05'23
Solution: C
We are given
[[math]]
f(t_1,t_2) = 2/L^2, \, 0 \leq t_1 \leq t_2 \leq L.
[[/math]]
Therefore,
[[math]]
\begin{align*}
\operatorname{E}[T_1^2 + T_2^2] &= \int_0^L \int_0^{t_2} (t_1^2 + t_2^2) \frac{2}{L^2} dt_t dt_2 \\
&= \frac{2}{L^2} \left \{ \int_0^{L} \left [ \frac{t_1^3}{3} + t_2^2t_1\right ]_0^{t_2} dt_1\right \} \\
&= \frac{2}{L^2} \left \{ \int_0^{L} \left (\frac{t_2^3}{3} + t_2^3 \right ) \, dt_2 \right \} \\
&= \frac{2}{L^2} \int_0^L \frac{4}{3} t_2^3 \, dt_2 \\
&= \frac{2}{L^2} \left [ \frac{t_2^4}{3}\right ]_0^L \\
&= \frac{2}{3}L^2.
\end{align*}
[[/math]]