May 13'23
Exercise
You are given the following 20 bodily injury losses before the deductible is applied:
Loss | Number of Losses | Deductible | Policy Limit |
750 | 3 | 200 | [math]\infty[/math] |
200 | 3 | 0 | 10,000 |
300 | 4 | 0 | 20,000 |
>10,000 | 6 | 0 | 10,000 |
400 | 4 | 300 | [math]\infty[/math] |
Past experience indicates that these losses follow a Pareto distribution with parameters [math]\alpha [/math] and [math]\theta = 10,000 [/math].
Calculate the maximum likelihood estimate of [math]\alpha [/math].
- Less than 2.0
- At least 2.0, but less than 3.0
- At least 3.0, but less than 4.0
- At least 4.0, but less than 5.0
- At least 5.0
May 13'23
Key: C
[[math]]
\begin{aligned}
&L = \left [ \frac{f (750)}{1 − F (200)}\right]^3 f (200)^3 f (300)^4 [1 − F (10, 000)]^6 \left[\frac{f (400)}{1 − F (300)} \right] \\
=& \left[ \frac{\alpha 10200^{\alpha}}{10750^{\alpha +1}}\right]^3 \left[ \frac{\alpha 10000^{\alpha}}{10200^{\alpha +1}}\right]^3 \left[ \frac{\alpha 10000^{\alpha}}{10300^{\alpha +1}}\right]^4\left[ \frac{\alpha 10000^{\alpha}}{20000^{\alpha +1}}\right]^6\left[ \frac{\alpha 10300^{\alpha}}{10400^{\alpha +1}}\right]^4 \\
&= \alpha^{14} 10200^{-3}10000^{13\alpha} 10300^{-4}10750^{-3\alpha -3} 20000^{-6\alpha}10400^{-4\alpha -4} \\
&\propto\alpha^{14}10000^{13\alpha}10750^{-3\alpha}20000^{-6\alpha}10400^{-4\alpha} \\
& \ln L = 14 \ln \alpha + 13\alpha \ln(10, 000) − 3\alpha \ln(10, 750) − 6\alpha \ln(20, 000) − 4\alpha \ln(10, 400) \\
&= 14 \ln \alpha − 4.5327 \alpha .
\end{aligned}
[[/math]]
The derivative is [math]14/\alpha − 4.5327 [/math] and setting it equal to zero gives [math]\hat{\alpha} = 3.089. [/math]