ABy Admin
May 02'23
Exercise
The owner of an automobile insures it against damage by purchasing an insurance policy with a deductible of 250. In the event that the automobile is damaged, repair costs can be modeled by a uniform random variable on the interval (0, 1500).
Calculate the standard deviation of the insurance payment in the event that the automobile is damaged.
- 361
- 403
- 433
- 464
- 521
ABy Admin
May 02'23
Solution: B
Let [math]X[/math] and [math]Y[/math] denote repair cost and insurance payment, respectively, in the event the auto is damaged. Then
[[math]]
Y = \begin{cases}
0, \quad x \leq 250 \\
x-250, \quad x \gt 250
\end{cases}
[[/math]]
and
[[math]]
\operatorname{E}[Y] = \int_{250}^{1500} \frac{1}{1500} (x-250) dx = \frac{1}{3000} (x-250)^2 \Big |_{250}^{1500} = \frac{1250^2}{3000} = 521
[[/math]]
[[math]]
\operatorname{E}[Y^2] = \int_{250}^{1500} \frac{1}{1500} (x-250)^2 dx = \frac{1}{3000} (x-250)^3 \Big |_{250}^{1500} = \frac{1250^3}{4500} = 434,028
[[/math]]
[[math]]
\operatorname{Var}[Y] = \operatorname{E}[Y^2] - (\operatorname{E}[Y])^2 = 434028 - (521)^2
[[/math]]
[[math]]
\sqrt{\operatorname{Var}[Y]} = 403.
[[/math]]