May 05'23
Exercise
A car dealership sells 0, 1, or 2 luxury cars on any day. When selling a car, the dealer also tries to persuade the customer to buy an extended warranty for the car. Let [math]X[/math] denote the number of luxury cars sold in a given day, and let [math]Y[/math] denote the number of extended warranties sold.
[[math]]
\begin{align*}
\operatorname{P}[X = 0, Y = 0] &= 1/6 \\
\operatorname{P}[X = 1, Y = 0] &= 1/12 \\
\operatorname{P}[X = 1, Y = 1] &= 1/6 \\
\operatorname{P}[X = 2, Y = 0] &= 1/12 \\
\operatorname{P}[X = 2, Y = 1] &= 1/3 \\
\operatorname{P}[X = 2, Y = 2] &= 1/6 \\
\end{align*}
[[/math]]
Calculate the variance of [math]X[/math].
- 0.47
- 0.58
- 0.83
- 1.42
- 2.58
May 05'23
Solution: B
[[math]]
\begin{align*}
\operatorname{P}(X = 0) &= 1/6 \\
\operatorname{P}(X = 1) &= 1/12 + 1/6 = 3/12 \\
\operatorname{P}(X = 2) &= 1/12 + 1/3 + 1/6 = 7/12 \\
\operatorname{E}[X] &= (0)(1/6) + (1)(3/12) + (2)(7/12) = 17/12 \\
\operatorname{E}[X^2] &= (0)2(1/6) + (1)2(3/12) + (2)2(7/12) = 31/12 \\
\operatorname{Var}[X] &= 31/12 – (17/12)2 = 0.58. \\
\end{align*}
[[/math]]