May 01'23
Exercise
A manufacturer’s annual losses follow a distribution with density function
[[math]]
f(x) = \begin{cases}
\frac{2.5(0.6)^{2.5}}{x^{3.5}}, \, x \gt 0.6 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
To cover its losses, the manufacturer purchases an insurance policy with an annual deductible of 2. Calculate the mean of the manufacturer’s annual losses not paid by the insurance policy.
- 0.84
- 0.88
- 0.93
- 0.95
- 1.00
May 01'23
Solution: C
The expected payment is
[[math]]
\begin{align*}
\int_{0.6}^2 x [\frac{2.5(0.6)^{2.5}}{x^{3.5}}] \, dx + \int_2^{\infty} [\frac{2.5(0.6)^{2.5}}{x^{3.5}}] \, dx &= 2.5(0.6)^{3.5} \left( \frac{-x^{1.5}}{1.5} \Big |_{0.6}^{2} + \frac{-x^{2.5}}{2.5} \Big |_2^{\infty} \right) \\
&= 2.5(0.6)^{2.5} \left ( \frac{-2^{-1.5}}{1.5} + \frac{0.6^{-1.5}}{1.5} + 2 \frac{2^{-2.5}}{2.5}\right ) \\
&= 0.9343.
\end{align*}
[[/math]]