May 13'23
Exercise
You are given:
- Losses follow a single-parameter Pareto distribution with density function: [[math]]f(x) = \frac{\alpha}{x^{\alpha+1}}, \, x\gt1, \, 0 \lt \alpha \lt \infty [[/math]]
- A random sample of size five produced three losses with values 3, 6 and 14, and two losses exceeding 25.
Calculate the maximum likelihood estimate of [math]\alpha [/math]
- 0.25
- 0.30
- 0.34
- 0.38
- 0.42
May 13'23
Key: A
The distribution function is
[[math]]F(x)=\int_{1}^{x} \alpha t^{-\alpha-1} d t=-\left.t^{-\alpha}\right|_{1} ^{x}=1-x^{-\alpha}[[/math]]
. The likelihood function is
[[math]]\begin{aligned}
L & =f(3) f(6) f(14)[1-F(25)]^{2} \\
& =\alpha 3^{-\alpha-1} \alpha 6^{-\alpha-1} \alpha 14^{-\alpha-1}\left(25^{-\alpha}\right)^{2} \\
& \propto \alpha^{3}[3(6)(14)(625)]^{-\alpha} .
\end{aligned}[[/math]]
Taking [math]\log s[/math], differentiating, setting equal to zero, and solving:
[math]\ln L=3 \ln \alpha-\alpha \ln 157,500[/math] plus a constant
[math]d \ln L / d \alpha=3 \alpha^{-1}-\ln 157,500=0[/math]
[math]\hat{\alpha}=3 / \ln 157,500=0.2507[/math].