May 13'23
Exercise
You are given:
- The random variable X has probability density function [[math]] f(x) = \alpha (1500)^{\alpha} (1500 + x)^{-(\alpha+1)}, \, \alpha \gt 0, \, x \gt 0[[/math]]
- Five sample observations are: 50 250 450 650 850
Calculate the maximum likelihood estimate of [math]\alpha [/math]
- 0.16
- 0.79
- 1.85
- 2.91
- 3.97
May 13'23
Key: E
The likelihood function is
[[math]]
L(\alpha ) = \alpha^51500^{5\alpha} \prod (1500 + x_i)^{-(\alpha + 1)}
[[/math]]
The loglikelihood function is
[[math]]
l (\alpha ) = 5 \ln \alpha + 5\alpha \ln1500 − (\alpha + 1) \alpha \ln (1500 + x_i )
[[/math]]
[[math]]
l^{'}(\alpha ) = \frac{5}{\alpha} + 5\ln 1500 - \sum\ln(1500 + x_i)
[[/math]]
Setting [math] l^{'}(\alpha ) = 0 [/math], we find:
[[math]]
\frac{5}{\alpha} = -5\ln(1500) + \sum \ln(1500 + x_i) \Rightarrow \hat{\alpha} = 3.974.
[[/math]]