Exercise
For three fully discrete insurance products on the same [math](x)[/math], you are given:
(i) [math]\quad Z_{1}[/math] is the present value random variable for a 20 -year term insurance of 50
(ii) [math]\quad Z_{2}[/math] is the present value random variable for a 20 -year deferred whole life insurance of 100
(iii) [math]\quad Z_{3}[/math] is the present value random variable for a whole life insurance of 100 .
(iv) [math]E\left[Z_{1}\right]=1.65[/math] and [math]E\left[Z_{2}\right]=10.75[/math]
(v) [math]\operatorname{Var}\left(Z_{1}\right)=46.75[/math] and [math]\operatorname{Var}\left(Z_{2}\right)=50.78[/math]
Calculate [math]\operatorname{Var}\left(Z_{3}\right)[/math].
- 62
- 109
- 167
- 202
- 238
Answer: C
[math]Z_{3}=2 Z_{1}+Z_{2}[/math] so that [math]\operatorname{Var}\left(Z_{3}\right)=4 \operatorname{Var}\left(Z_{1}\right)+\operatorname{Var}\left(Z_{2}\right)+4 \operatorname{Cov}\left(Z_{1}, Z_{2}\right)[/math]
where [math]\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\underbrace{E\left[Z_{1} Z_{2}\right]}_{=0}-E\left[Z_{1}\right] E\left[Z_{2}\right]=-(1.65)(10.75)[/math]