Exercise
For a whole life insurance of 1000 with semi-annual premiums on (80), you are given:
(i) A gross premium of 60 is payable every 6 months starting at age 80
(ii) Commissions of [math]10 \%[/math] are paid each time a premium is paid
(iii) Death benefits are paid at the end of the quarter of death
(iv) [math]{ }_{t} V[/math] denotes the gross premium policy value at time [math]t, t \geq 0[/math]
(v) [math]\quad{ }_{10.75} V=753.72[/math]
(vi)
[math]t[/math] | [math]l_{90+t}[/math] |
---|---|
0 | 1000 |
0.25 | 898 |
0.50 | 800 |
0.75 | 706 |
(vii) [math]i^{(4)}=0.08[/math]
Calculate [math]{ }_{10.25} \mathrm{~V}[/math].
- 680
- 690
- 700
- 710
- 730
Answer: E
[math]i^{(4)}=0.08[/math] means an interest rate of [math]j=0.02[/math] per quarter. This problem can be done with two quarterly recursions or a single calculation.
Using two recursions:
[math]{ }_{10.75} V=\frac{\left[{ }_{10.5} V+60(1-0.1)\right](1.02)-\frac{800-706}{800}(1000)}{\frac{706}{800}}[/math]
[math]753.72=\frac{\left[{ }_{10.5} V+54\right](1.02)-117.50}{0.8825} \Rightarrow_{10.5} V=713.31[/math]
[math]{ }_{10.5} V=\frac{\left[{ }_{10.25} V\right](1.02)-\frac{898-800}{898}(1000)}{\frac{800}{898}} \Rightarrow 713.31=\frac{\left[{ }_{10.25} V\right](1.02)-109.13}{0.8909}[/math]
[math]{ }_{10.25} V=730.02[/math]
Using a single step, [math]{ }_{10.25} V[/math] is the [math]E P V[/math] of cash flows through time 10.75 plus [math]{ }_{0.5} E_{80.25}[/math] times the [math]E P V[/math] of cash flows thereafter (that is, [math]{ }_{10.75} V[/math] ).
[math]{ }_{10.25} V=(1000)\left[\frac{898-800}{898(1.02)}+\frac{800-706}{898(1.02)^{2}}\right]-(60)(1-0.1)\left[\frac{800}{898(1.02)}\right]+\left[\frac{706}{898(1.02)^{2}}\right](753.72)=730[/math]