Exercise
For a special 2-year term insurance policy on [math](x)[/math], you are given:
(i) Death benefits are payable at the end of the half-year of death
(ii) The amount of the death benefit is 300,000 for the first half-year and increases by 30,000 per half-year thereafter
(iii) [math]\quad q_{x}=0.16[/math] and [math]q_{x+1}=0.23[/math]
(iv) [math]\quad i^{(2)}=0.18[/math]
(v) Deaths are assumed to follow a constant force of mortality between integral ages
(vi) [math]Z[/math] is the present value random variable for this insurance
Calculate [math]\operatorname{Pr}(Z\gt277,000)[/math].
- 0.08
- 0.11
- 0.14
- 0.18
- 0.21
Answer: D
Half-year | PV of Benefit | PV > 277, 000
if and only if (x) dies in the 2nd or 3rd half years. |
2 | [math]300,000 v^{0.5}=(300,000)(1.09)^{-1}=275,229[/math] | |
3 | [math]330,000 v^{1}=(330,000)(1.09)^{-2}=277,754[/math] | |
4 | [math]390,000 v^{2}=(390,000)(1.09)^{-4}=276,286[/math] |
Under CF assumption, [math]{ }_{0.5} p_{x}={ }_{0.5} p_{x+0.5}=(0.84)^{0.5}=0.9165[/math] and [math]{ }_{0.5} p_{x+1}={ }_{0.5} p_{x+1.5}=(0.77)^{0.5}=0.8775[/math] Then the probability of dying in the [math]2^{\text {nd }}[/math] or [math]3^{\text {rd }}[/math] half-years is [math]\left({ }_{0.5} p_{x}\right)\left(1-{ }_{0.5} p_{x+0.5}\right)+\left(p_{x}\right)\left(1-{ }_{0.5} p_{x+1}\right)=(0.9165)(0.0835)+(0.84)(0.1225)=0.1794[/math]