May 14'23
Exercise
The distribution of the number of claims, N, is a member of the (a, b, 0) class. You are given:
- [math]\operatorname{P}(N=k) = p_k[/math]
- [math]\frac{p_6}{p_4} = 0.5 [/math] and [math]\frac{p_5}{p_4} = 0.8[/math]
A zero-modified distribution, [math]N^M[/math], associated with [math]N[/math] has [math]\operatorname{P}(N^M = 0) = 0.1 [/math].
Calculate [math]\operatorname{E}(N^M) [/math].
- 3.64
- 3.73
- 3.85
- 4.00
- 4.05
May 14'23
Key: A
[[math]]
\begin{aligned}
&\frac{p_k}{p_{k-1}} = a + \frac{b}{k} \Rightarrow 0.8 = a + \frac{b}{5} \quad \textrm{and} \frac{0.5}{0.8} = 0.625 = a + \frac{b}{6} \\
&\Rightarrow 0.8 − 0.625 = b(\frac{1}{5} - \frac{1}{6} ) \Rightarrow b = 5.25 \quad \textrm{and} \, a = -0.25. \\
&\Rightarrow \textrm{ N is binomial with } \, \frac{-q}{1-q} = -025 \quad \textrm{and} \, (m+1) \frac{q}{1-q} = 5.25 \Rightarrow m = 20 \quad \textrm{and} \, q = 0.2 \\ &\Rightarrow \operatorname{E}(N^M) = (1-p_0^M) \frac{mq}{1-(1-q)^m} = 3.64.
\end{aligned}
[[/math]]