Jan 17'24
Exercise
You are given the following estimated survival properties and risk sets determined using the Kaplan-Meier method.
[math]j[/math] | [math]t_{(j)}[/math] | [math]r_{j}[/math] | [math]\hat{p}_{j}[/math] |
---|---|---|---|
1 | 17.2 | 29 | 0.9655 |
2 | 22.1 | 27 | 0.9259 |
3 | 32.7 | 24 | 0.9583 |
4 | 45.0 | 20 | 0.9500 |
Calculate the standard deviation of [math]\hat{S}(25)[/math] using Greenwood's formula.
- 0.0543
- 0.0556
- 0.0579
- 0.0604
- 0.0626
Jan 17'24
Answer: C
[math]s d[\hat{S}(25)] \approx \hat{S}(25) \sqrt{\sum_{t_{(j)} \leq 25} \frac{d_{j}}{r_{j}\left(r_{j}-d_{j}\right)}}[/math]
[math]\hat{S}(25)=\hat{p}_{1} \times \hat{p}_{2}=0.8940[/math]
[math]d_{1}=r_{1}\left(1-\hat{p}_{1}\right)=1 ; \quad d_{2}=r_{2}\left(1-\hat{p}_{2}\right)=2[/math]
[math]\Rightarrow s d[\hat{S}(25)] \approx 0.8940 \sqrt{\left(\frac{1}{29 \times 28}+\frac{2}{27 \times 25}\right)}=0.0579[/math]