May 13'23
Exercise
You are given:
- The number of claims follows a Poisson distribution with mean [math]\lambda [/math] .
- Observations other than 0 and 1 have been deleted from the data.
- The data contain an equal number of observations of 0 and 1.
Calculate the maximum likelihood estimate of [math]\lambda [/math] .
- 0.50
- 0.75
- 1.00
- 1.25
- 1.50
May 13'23
Key: C
There are n/2 observations of N = 0 (given N = 0 or 1) and n/2 observations of N = 1 (given N = 0 or 1). The likelihood function is
[[math]]
L = \left( \frac{e^{-\lambda}}{e^{-\lambda} + \lambda e^{-\lambda}} \right)^{n/2}\left( \frac{\lambda e^{-\lambda}} {e^{-\lambda} + \lambda e^{-\lambda}} \right)^{n/2} = \frac{\lambda^{n/2}e^{-n\lambda}}{e^{-\lambda} + \lambda e^{-\lambda}}= \frac{\lambda^{n/2}}{(1+\lambda)^n}
[[/math]]
Taking logs, differentiating and solving provides the answer.
[[math]]
\begin{aligned}
&l = \ln L = (n / 2) \ln \lambda − n \ln(1 + \lambda ) \\
&l^{'} = \frac{n}{2\lambda} - \frac{n}{1+\lambda} = 0 \\
&n(1+\lambda) -2 n\lambda = 0 \\
&1-\lambda = 0, \lambda = 1.
\end{aligned}
[[/math]]