May 06'23
Exercise
New dental and medical plan options will be offered to state employees next year. An actuary uses the following density function to model the joint distribution of the proportion [math]X[/math] of state employees who will choose Dental Option 1 and the proportion [math]Y[/math] who will choose Medical Option 1 under the new plan options:
[[math]]
f(x,y) = \begin{cases}
0.50, \,\, 0 \lt x \lt 0.5, 0 \lt y \lt 0.5 \\
1.25, \,\, 0 \lt x \lt 0.5, 0.5 \lt y \lt 1 \\
1.50, \,\, 0.5 \lt x \lt 1, 0 \lt y \lt 0.5 \\
0.75, \,\, 0.5 \lt x \lt 1, 0.5 \lt y \lt 1 \\
\end{cases}
[[/math]]
Calculate [math]\operatorname{Var} (Y | X = 0.75)[/math].
- 0.000
- 0.061
- 0.076
- 0.083
- 0.141
May 06'23
Solution: C
[[math]]
f(y | x = 0.75) = \frac{f(0.75,y)}{\int_0^1 f(0.75,y) dy} = \frac{f(0.75,y)}{1.125}.
[[/math]]
Thus,
[[math]]
f(y | x= 0.75) = \begin{cases} 4/3, \, 0 \lt y \lt 0.5 \\ 2/3, \, 0.5 \lt y \lt 1 \end{cases}
[[/math]]
which leads to [math]\operatorname{Var}(Y | X = 0.75 ) = 11/144 = 0.076 [/math].