Exercise
For a fully discrete whole life insurance of 1 on (50), you are given:
(i) Expenses of 0.20 at the start of the first year and 0.01 at the start of each renewal year are incurred
(ii) Mortality follows the Standard Ultimate Life Table
(iii) [math]\quad i=0.05[/math]
(iv) Gross premiums are determined using the equivalence principle.
Calculate the variance of [math]L_{0}[/math], the gross loss-at-issue random variable.
- 0.023
- 0.028
- 0.033
- 0.0038
- 0.043
Answer: C
Let [math]\pi[/math] be the annual premium, so that [math]\pi \ddot{a}_{50}=A_{50}+0.01 \ddot{a}_{50}+0.19[/math]
[math]\Rightarrow \pi=\frac{A_{50}+0.19}{\ddot{a}_{50}}+0.01=\frac{0.18931+0.19}{17.0245}+0.01=0.03228[/math]
Loss at issue: [math]L_{0}=v^{k+1}-(\pi-0.01) \ddot{a}_{\overline{k+1}}\left(1-v^{k+1}\right) / d+0.19[/math]