ABy Admin
May 09'23
Exercise
An insurance company has found that 1% of all applicants for life insurance have diabetes.
Calculate the probability that five or fewer of 200 randomly selected applicants have diabetes.
- 0.85
- 0.88
- 0.91
- 0.95
- 0.98
ABy Admin
May 09'23
Solution: E
The number of applicants with diabetes has a binomial distribution and thus
[[math]]
\begin{align*}
\operatorname{P}(X \leq 5 ) &= \sum_{x=0}^5 \binom{200}{x} (0.01)^x(0.99)^{200-x} \\
&= 0.134 + 0.271 + 0.272 + 0.181 + 0.090 + 0.036 \\
&= 0.984.
\end{align*}
[[/math]]
A faster solution is to use the Poisson distribution with λ − 200(0.01) =2 as an approximation. Then,
[[math]]
\begin{align*}
\operatorname{P}(X \leq 5) = \sum_{x=0}^5 \frac{e^{-2}2^x}{x!} &= e^{-2} \left ( \frac{1}{1} + \frac{2}{1} + \frac{4}{2} + \frac{8}{6} + \frac{16}{24} + \frac{32}{120}\right) \\
&= 0.983.
\end{align*}
[[/math]]