Exercise
For a fully discrete whole life insurance of 1000 on [math](x)[/math] with net premiums payable quarterly, you are given:
(i) [math]\quad i=0.05[/math]
(ii) [math]\quad \ddot{a}_{x}=3.4611[/math]
(iii) [math]\quad P^{(W)}[/math] and [math]P^{(U D D)}[/math] are the annualized net premiums calculated using the 2-term Woolhouse [math](W)[/math] and the uniform distribution of deaths (UDD) assumptions, respectively
Calculate [math]\frac{P^{(U D D)}}{P^{(W)}}[/math].
- 1.000
- 1.002
- 1.004
- 1.006
- 1.008
Answer: B
Woolhouse: [math]\quad{ }^{W} \ddot{a}_{x}^{(4)}=3.4611-\frac{3}{8}=3.0861[/math]
and
[math]P^{(W)}=\frac{1000(0.83518)}{3.0861}=270.63[/math]
[math]P^{(U D D)}=\frac{1000(0.83518)}{3.0790}=271.25[/math]
[math]\frac{P^{(U D D)}}{P^{(W)}}=\frac{271.25}{270.63}=1.0023[/math]