Jan 15'24

Exercise

(i) An excerpt from a select and ultimate life table with a select period of 3 years:

[math]x[/math] [math]l_{[x]}[/math] [math]l_{[x]+1}[/math] [math]l_{[x]+2}[/math] [math]l_{x+3}[/math] [math]x+3[/math]
60 80,000 79,000 77,000 74,000 63
61 78,000 76,000 73,000 70,000 64
62 75,000 72,000 69,000 67,000 65
63 71,000 68,000 66,000 65,000 66

(ii) Deaths follow a constant force of mortality over each year of age

Calculate [math]1000_{2 \mid 3} q_{[60]+0.75}[/math].

  • 104
  • 117
  • 122
  • 135
  • 142

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 15'24

Answer: B

Under constant force over each year of age, [math]l_{x+k}=\left(l_{x}\right)^{1-k}\left(l_{x+1}\right)^{k}[/math] for [math]x[/math] an integer and [math]0 \leq k \leq 1[/math].

[[math]] \begin{aligned} & { }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}} \\ & l_{[60]+0.75}=(80,000)^{0.25}(79,000)^{0.75}=79,249 \\ & l_{[60]+2.75}=(77,000)^{0.25}(74,000)^{0.75}=74,739 \\ & l_{[60]+5.75}=(67,000)^{0.25}(65,000)^{0.75}=65,494 \end{aligned} [[/math]]


[[math]]{ }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}}=\frac{74,739-65,494}{79,249}=0.11679[[/math]]

[[math]]1000_{2 \mid 3} q_{[60]+0.75}=116.8[[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00